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Abstract:

The derivation of implicit Runge-Kutta-Nystrom (RKN) scheme with continuous coefficients for the direct

approximation of special second Order ordinary initial value problems(I\VPs) using the theory of s-stage Runge-
Kutta (RK) for first order ordinary differential equations is presented. The study provides the use of both
collocation and interpolation procedure to obtain the scheme. Based on a homogeneous test model, the stability and
error analysis of the scheme is also investigated. The continuous formulation of the integrator will enable us to
evaluate at some grid and off grid points in the integration interval. The advantage of the continuous scheme as
against the discrete schemes for the direct integration of the second order special IVP includes the fact that
multiple discrete schemes can be obtained. Numerical examples have been included to demonstrate the accuracy of

the scheme.
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Introduction

In this paper, we proposed that using the well-known
properties of the s-stage implicit RK methods for first order
ordinary differential equation; it is possible to obtain an
implicit RKN method with continuous coefficients for the
numerical approximation of the special second order I\VPs.

Y' =1y y00)=Yo, Y(G)=Yo (D)
Having periodic solution; such problems often arises in
different areas of engineering applications and applied

sciences such as celestial mechanics, seismology and
electrodynamics. The general s-stage RKN method for the
direct integration of the general second order 1\VVPs

Y' =1y, Y)y06) = Yo Y(X) =Y, (12)
Where the primes denote differentiation with respect to X
and f: R x R™— R™is defined in the form;

Your = Yo T hyr'1 + hzzbj fj ’y;l = y; + thj fj
j=1 =1

(1.3)

f, = f(x,+c;h,y, +c;hy; +hZZ:ajk fo, v +hZa_jkfk)
k=L k=1

Where: s denote the number of stages of the method, h= Xy — X, isthestepsizeand Y, 4, yr'Hl are approximations to the

exact solution Y(X,,,) and its derivative y'(X,;) respectively. The RKN parameters & ,b;,0; and c; defines the

method and the Cj 'S satisfy the row simplifying assumption;

1,
56 :;ajk (1.4)
When the right-hand side of the system (1.2) is independent of
y’ , the RKN simplifies to a special RKN method. This is

defined, see for example sharp et al. (1990), Franco and
Gomez (2009), Imoni et al. (2014) by;
Where;

Vs = Yo+ Y 022 b 1 Yay =y +hY b, f,
= = (1.5)
f, = f(x,+c;h,y, +c;hy; +h2;ajk f)

The coefficients of the method are compactly represented by
means of the Butcher-array;

c A

EJT

BT

Where;
c=le, e ]y [oynb ] by =b) e b T
and A= |a; | with C e R, b7, b7 €% and A e Ro*

Implicit Runge-Kutta methods for the first order differential
equations

The general s-stage RK methods, Butcher (2008), Hairer et al.

(1993), Lambert (1991) for any IVPs

y, = f(X! y)’ y(Xo) = yO’ f RN—> RN
is defined by;

(1.6)
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Where;

Yuel = Wn + hz 'B.k.
ml

| - 1=l 2.:-5
/ 1.7

:‘J : 1
k =f| % teh v, +hy ak;
iel

It is also assume that the row-sum condition holds:

cizzslaij, =1 2,---,s,ibi=1 (1.8)
i1 i=1

It is convenient to represent the coefficients of RK methods in
the Butcher tableau;

c| A ! @) g ..
€,
5T = | GGy Oy
¢ Oy oy &
W, Wy ... W,
with

T T

c =[c ., ] w=[w, Wy, W] ,Az[aij]
With implicit RK methods, a general non-linear system of
equations must be solved at every time step for all stages
simultaneously. However, because of their superiority
stability properties, implicit RK methods are well-suited for
periodic and stiff problems (Iserles, 1996)

As earlier mentioned in section 1.1, the general second order

system (1.2), considering the vectors (Y,Y')as new
variables is given by
y(Xo) =Y

MR
y') LEGy YD) Yi(%) =Y,

See Hairer et al. (1993). However, Hairer and Wanner (1976)

established that for the coefficients A = §jk in (1.4), the

same conditions are obtained as for classical RK methods.
Hence, the coefficients of any RK method (of order p) can be
taken as A in (1.4). Then put A= A%, ¢ = Ae, then all
order conditions (up to order p) are satisfied, since this choice

(1.9)

corresponds exactly to the RK method A applied to the
system (1.9). Apply method (1.2) to (1.9) to obtain the
methods (1.3) and (1.5) when applied to (1.1) and (1.2),

A=(3)=4",
Z:(aj):/;’,ﬂ:ﬂe, c=Ae, b =W, b =W'B

.This is symbolize in the Butcher form as;

respectively with
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A A4

‘ o BT

See Jain et al. (1989), Adeboye and Shaba (2011)

Some attempts have been made to solve the general second
order IVPs (1.2) directly without reduction to a first-order
system of equations using collocation approach. For example,
Adegboye and Shaba (2011) proposed a collocation method
for the solution of the general second IVPs (1.2) directly
without reducing it to first order systems of ODEs. In a recent
paper of Adegboye and Shaba (2011), the authors
demonstrated an application of LMMs to solve directly the
general second order IVPs (1.2) by using collocation
approach. In the case of the special second order IVP (1.1),
little or nothing seemed to have been done; in fact we are not
aware of any of such paper. The aim of this paper is to
demonstrate using the theory of the s-stage RK methods for
first order ODEs, RKN method can be obtained by collocation
procedure for the direct integration of the special IVPs (1.1).
This work extends the formalism of Jain et al. (1989) and
Adegboye and Shaba (2011) to the special second order IVPs
1.2)

Construction of the RKN scheme with continuous
coefficients

Consider the power series:

p)=) 2’
j=0

This is used as the basis or trial function to produce an
approximate solution to (1.1), (1.2) and (1.6) as;

t+m-1

yx)=> ax (@2
=0

where
el j=0A)t+m-1,y eC"(a, b) = P(x)

2.1)

The aj are the parameters to be determined, t and M are

number of points of interpolation and collocation points.
Expressed (2.2) as

t-1 m-1 T
y(X) :[Z gp],t+mflyn+j + Z h¢j,1+m71 fn+j ](lr X, XZ [ERES] XHm?l) (23a)
j=0 j=0

and can be written explicitly as

1
X
YOO =LY Yeras Fooer FumaICT | X0 (2.30)
Xt+m—1
(P01 o Par Ny Ny ]
500,2 (01—1,2 h¢0,2 h¢m—1,2 (2 SC)
C=0, - Pus Ny, N, -pt

_(pO,H-m "'(/)t—l,t+m h¢0,t+m h¢m—1,t+m |
of dimension (t +m) x (t +m) and
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1 x,  x2 o..oxemt
2 t+m-1
1 Xn+1 Xn+l n+1
_ 2 t+m-1 (2.3d)
D_ 1 Xn+t—1 Xn+1 Xn+t—1
0 1 2% .. (t+m-1x®m?
< m-1 & (t+m-2)
10 1 2x7.. (t+m-Dx, "7 |

This matrix is called the collocation matrix and entries of C
are the constant coefficients of the polynomials given in (2.2)
which assume an approximate solution to (1.1), (1.2) and (1.6)
in the form (2.2). The first and second derivatives of (2.2) are
respectively

m+1-1

y()= 2 jax ™ =1f(xy) (24)
j=0

m+1-1

y' ()= i(i-Dax?=1(xy.y) @3

j=0
Interpolate (2.2) at the grid points X, ;, j=01,..,t-1

and collocate (2.3) at X =0,1...,m—1 chosen from

.
n+j
the given step [ X, X, ]. In this case K=5,m=t=3

and both at pointSE,g,—. Using the general multistep

collocation methods (see Yahaya and Adeghoye (2007), lead
to the following;

h h h h h
1 X +— X +—)° x +=)° (x +2)° X, +—)°
nt 3 (X, 5) (X, 5) ( X, 5) (X, 5)
2h 2h 2h 2h 2h
1 X+— X +—)? X +—)°% (x +—=)* (x,+—)5
z (X, 5) (X, 5) (X, 5) (X, 5)
R - MR- LR POk
5 5 5 5
D= ah h h h 29
0 12X +— 3(x. +=)*  4(x. +=)  5(x +-)*
n (X, 5) (X, 5) (X, 5)
4h 2h 2h 2h
0 12X +— 3(x. +—) 4(x +—)° 5(x +—)*
g (X, 5) (X, 5) (X, 5)
6h 3h., 3h., 3h.,
0 1 2x +— 3(X. +— 4(X +— 5(x +—
= (X, 5) (X, 5) (X, 5)

With the help of maple 13 mathematical software, we inverted matrix D, substituted into (2.3d) and obtain the continuous form;

4h®

y(x) _(—(72h5 +1140x h* +6350x2h° +16375x°h? +20000xh + 9375x%) + Ej
) 1

5

(2.7)

(9h* +120x,h® +550x2h? +100x°h +625x*) — 20(6h® +55x,h? +150x2h +125x%)x + F
* h* yn+—
. 8h° +132x h* +830xh* + 2475x°h* + 3500x*h +1875x°) + G
4h® n+d
[ ~(36h° + 480x 1" + 2425x¢h® + 5875xCh” + 6875x,h +3125x7) + H | .
20h* g
. —(18h° +285x,h* +1700x2h® + 4750x°h? + 6250 h +3125x°) + | ¢
5h* n+§
—(12h° +200x,h* +1275xh* + 3875x°h? +5625% h +3125x°) + J
+ 3 f
20h n+s
where
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E =5(228h* + 2540x_h® +9825x2h? +16000x°h + 9375x*)x — 25(254h* +1965x h? +
4800x2h + 3750%%)x? +125(131h? + 640x, h + 750x2)X° — 625(32h + 75x )x* +9375x°,
F =50(11h* +60x h +75x?)x*> —=500(2h +5x_)x° +625x*),
G =-5(132h* +1660x h* + 7525x°h* +14000x°h + 9375x} ) x + 25(166h* +1485x _h* +
4200x°h +3750x%>)x* —125(99h° +560x_h + 750x°)x* + 625(28h + 75x)x* —9375x%°,
H =5(96h* +970x_h® +3525x7h? +5500%°h + 3125x)x — 25(97h° + 705x_h* +
1650x°h +1250x%)x* +125(47h* +220x_h + 250x°)x® — 625(11h + 25x_)x* +3125x°,
| = (57h* +680x,h* +2850x2h* +5000x°h + 3125x*)x —10(34h* + 285x h* +
750x2h + 625%°)x? +50(L9h? +100x, h +125x2)x° — 625(2h +5x, )x* + 625x°,
J =25(8h* +102x,h® + 465x7h? +900x°h + 625x} )x — 25(51h° + 465x h* +
1350x2h +1250%°)x? +125(31h? +180x, h + 250x2)x° — 625(9h + 25x_)x* + 3125x°

Evaluating the continuous formula in equation (2.7) and its first derivative at points a X = X and X = X_,;, results in the
following block hybrid schemes

18yn+£ —9yn —lOyn+§ +Y, :g(—Qf ,—18 fn , —3fn+3]
5

2
+Z
5 5 5

—117yn+£ —64yn+g +18Oyn+E + VY= %{36 fn+1 +192 fn+3 +72 fn+3j
5

5 5 5 5 5
—285y , +120y , +165y 3:h[24f L +57f , +10f 3—fnJ (28)
n+g n+g n+g n+g n+g n+g

~1110y , 480y , +1590y , = h(69 f,+352f ,+120f - fMj
5 5 5

n+= n+=
5 5 5

Thensolvefor Y ,,¥Y ,,Y 3,V intheblock hybrid scheme (2.8) simultaneously and obtain the following block scheme;
n+=  N+—  n+—

5 5

h

=y + 1275f +3135f , —1130f , +340f , —19f
yn% Yn 18000( n n% n% n% n+1)
y ,=Y,+ h (146f, +615f , +130f , +10f , —f, )
e 2250 n e nz

h (2.9
yn+g =Yy + 5005 (1381, +495 fn% +390 fn+§ +180 fn+g ~3f )
Yo=Y +%(2 f,+75f | 501 ,+100f 4+17f,,)

5 5 5
_ ( 173 1 21 1 jT
Each of the above schemes has order five and error constant , , , —
112500000 1171875 12500000 60000

respectively.
The coefficients as characterized by Butcher array (2.1), are obtain, respectively as
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Table 1: The coefficients for the first derivative

0 0 00 O
637 209 113 17 19

9000 1200 1800 900 18000
73 41 13 1 1

1125 150 225 225 2250
69 99 39 9 3

1000 400 200 100 2000

glw | ok ©

Table 2: The coefficients for the implicit RKN method (1.1) and (1.2)
0

0 0 0 0 0 0

1 637 209 113 17 19

5 9000 1200 1800 900 18000

2 73 41 13 1 1

5 1125 150 225 225 2250

3 69 99 39 9 3

5 1000 400 200 100 2000

1 1 25 _ 25 25 17
72 48 72 36 144

1 25 25 25 17

72 48 72 36 144

0 0 0 0
2147 173 473 179 139

225000 10000 45000 45000 45000
658 241 8 31 7

28125 3750 625 5625 18750
909 1179 69 63 33

25000 10000 5000 5000 50000

. |12 252517 23111111
72 48 72 36 144 360 48 24 72 80
1 25 25 25 17 23 11 1 11 1
72 48 72 36 144 360 48 24 72 80

Substituting all the parameters into the special form of RKN method (1.5) we obtain the implicit RKN scheme which is suitable
for the integration of second order initial value problem possessing oscillatory solution as,

Lu 1
+hy’ +h? —f+—f+=
Yo = Yo + 1, (360 48 2 24 0

25 25 25

fo + f)

+h _—f, ——f, +—f, +— f 2.10
yn+l yn ( 48 2 72 3 36 4 5) ( )
where
f=1(x,,¥,)

T hyn+1h, e ( 2147 173 [ 473 - 179 (| 139 )
5 225000 10000 45000 45000 45000
2 2 658 241 8 31
f.=f(x +=h,y_+—=hy’ +h? - + f, —
.= T 5ty Yo+ (28125 ' 3750 625 ° 5625 * 18750 fs)
3 3 909 1179 69 63 33
f,=1(x,+= h +— h +h? + + f, + — f
( Vi Vi (25000 10000 > 5000 ° 5ooo * 50000 2
11 11
=f(x,+hy,+h +h? —f+=f+—=f+ f
( yn yn (360 48 2 3 72 4 )

The interval of stability of the method is also investigated. Thus the amplification matrlx obtained is,

1. 183, 7 . 1 _, 99
I44+—2+—0"+—0"+—1"+—1
2 50 250 100 5000
1+ 82,8 s, 3 ey 3 p

26 500 500 20000

R(z) =
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1+—z+iz +—

1+—z+£22+—

p S 4 8 s

7 - Z
125" 500" "10000° 100000
1o, 18, 41

2.11)

_|_
500 500 5000 312500
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The stability region plotted using MATLAB software shows that the implicit RKN method has the stability interval of

approximately (6.83, 0). The stability plot is depicted in Fig. 1.

'/

15

\'

N

0.5

Im(z)
o

Re(z)

Fig. 1: Stability region for the implicit RKN method of Table 2

Numerical examples

In this section, the new method is applied to two well-known
periodic initial value problems. These problems have exact
solution, thus their actual error is compared. In tables 1-2, the
following notations are used.

Emax: maximum error, h: step size, Steps: the number of
steps

FCN: the number of functions evaluation

The maximum error is defined as the absolute value of the
computed solution minus the exact solution.

Emax = max(||yn — (x0)||)

Problem 1: Consider the inhomogeneous equation

y" =99sin x—100y, y(0) =1, y'(0) =11

The exact solution of the problem is given as
y(X) = cos(10x) +sin(10x +sin(x), 0< x <107
Source: Papageogious and Famelis (2001)

Problem 2: We next consider the second order initial value
problem

Y =—a&’y+ (o’ —1)sinx ;y(0) =1 y'(0) =1+ ®;0 < x <2
with exact solution

y(X) = cos(wX) +sin(wx) +sin(x), o >1,
we take @ =10)

Sources: Simos (1993)

(Here

Table 1: Absolute Maximum errors for Problem 1
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h Steps FCN Emax
0.10 356 5762 1.58273841E-01
0.02 3141 15705  2.55013946E-02
0.001 58534 39265  2.25804076E-03
0.005 628423 202548 3.68678628E-03
0.0005 8283167 3141554 3.64915346E-03

Table 2: Absolute maximum errors for Problem 2

h Steps  FCN Emax
0.10 314 1570  1.10502516E-02
0.02 1570 7850  2.25602032E-02
0.001 7853 39265 4.35236343E-03
0.005 62562 525667 5.65779254E-03
0.0005 62831 314155 7.854915346E-3

From the numerical results in Tables 1 and 2, it can be seen
that the new method compared favorably with the exact
solution of the special second order IVPs considered with
oscillatory behavior in terms of global error. Hence, the
method is suitable for the integration of the IVPs (1.1).

Conclusion

We have been able to establish an implicit Runge-Kutta-
Nystrom scheme with continuous coefficients for the direct
numerical approximation of the special second order initial
value problems (IVPs) in ordinary differential equations. The
derived method is shown to have non-vanishing intervals of
periodicity and we also give the error constants. Numerical
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results obtained from the two problems solved converge with
the exact solutions for various values of step length. This
approach seems to us very promising for analysis and
derivation of new numerical methods for ODEs. The
extension to high order methods with larger stability interval
and their implementation might be an interesting option for
future research.
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